

www.coursligne.com

Suivi temporel d'une transformation chimique : (6 points)

On introduit dans un ballon, une quantité de poudre de Zinc, et on y verse à un volume $V = 75 \, mL$ d'une solution aqueuse d'acide sulfurique. La réaction qui se produit a pour équation: $Zn_{(x)} + 2H_3O_{(aq)}^* \longrightarrow Zn_{(aq)}^{2+} + H_{2(g)} + 2H_2O_{(l)}$ La courbe ci-contre représente les variations de l'avancement x de la réaction en fonction du temps. **Données:**

- La vitesse volumique moyenne d'une réaction a pour expression : $v_{moy} = \frac{1}{V} \cdot \frac{\Delta x}{\Delta t}$; (avec V volume total du mélange).
- $3375x35 \approx 1,19.10^5$; $75 \times 45 = 3375$

Q41. L'avancement final x, vaut:

$\mathbf{A} x_f = 29,8mmol$	В	$x_f = 28,5 mmol$	C	$x_f = 27,8 mmol$	D	$x_f = 25,6 mmol$	E	$x_f = 20,8 mmol$
	J			27,000.00	ע	$x_f = 25,0$ minor		$x_f = 20,0 mmot$

Q42. La valeur du temps de demi-réaction vaut:

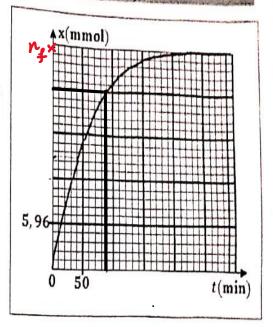
A
$$t_{1/2} = 60 \,\text{min}$$
 B $t_{1/2} = 45 \,\text{min}$ **C** $t_{1/2} = 40 \,\text{min}$ **D** $t_{1/2} = 35 \,\text{min}$ **E** $t_{1/2} = 30 \,\text{min}$

Q43. La valeur de la vitesse volumique moyenne de la réaction entre $t_0 = 0$ et $t_1 = 90 \,\text{min}$ vaut:

A
$$v_{moy} = 4.10^{-3} mol.L^{-1}.min^{-1}$$
 B $v_{moy} = 5,33.10^{-3} mol.L^{-1}.min^{-1}$ C $v_{moy} = 6,67.10^{-3} mol.L^{-1}.min^{-1}$ D $v_{moy} = 8.10^{-3} mol.L^{-1}.min^{-1}$ E $v_{moy} = 3,5.10^{-3} mol.L^{-1}.min^{-1}$

Q41:

$$M_f = 5 \times 5,96$$


Q42:

$$n_{1/2} = \frac{n\rho}{2} = 14,9 \text{ monol.}$$

Suivi temporel d'une transformation chimique : (6 points)

On introduit dans un ballon, une quantité de poudre de Zinc, et on y verse à un volume $V = 75 \, mL$ d'une solution aqueuse d'acide sulfurique. La réaction qui se produit a pour équation: $Zn_{(s)} + 2H_3O_{(sq)}^* \longrightarrow Zn_{(sq)}^{2*} + H_{2(g)} + 2H_2O_{(l)}$ La courbe ci-contre représente les variations de l'avancement x de la réaction en fonction du temps. **Données:**

- La vitesse volumique moyenne d'une réaction a pour expression : $v_{moy} = \frac{1}{V} \cdot \frac{\Delta x}{\Delta t}$; (avec V volume total du mélange).
- $3375 \times 35 \approx 1,19.10^5$; $75 \times 45 = 3375$

Q41. L'avancement final x, vaut:

A
$$x_f = 29.8 mmol$$
 B $x_f = 28.5 mmol$ C $x_f = 27.8 mmol$ D $x_f = 25.6 mmol$ E $x_f = 20.8 mmol$

Q42. La valeur du temps de demi-réaction vaut:

A
$$t_{1/2} = 60 \,\text{min}$$
 B $t_{1/2} = 45 \,\text{min}$ **C** $t_{1/2} = 40 \,\text{min}$ **D** $t_{1/2} = 35 \,\text{min}$ **E** $t_{1/2} = 30 \,\text{min}$

Q43. La valeur de la vitesse volumique moyenne de la réaction entre $t_0 = 0$ et $t_1 = 90 \,\text{min}$ vaut:

A
$$v_{moy} = 4.10^{-3} mol.L^{-1}.min^{-1}$$
 B $v_{moy} = 5,33.10^{-3} mol.L^{-1}.min^{-1}$ C $v_{moy} = 6,67.10^{-3} mol.L^{-1}.min^{-1}$ D $v_{moy} = 8.10^{-3} mol.L^{-1}.min^{-1}$ E $v_{moy} = 3,5.10^{-3} mol.L^{-1}.min^{-1}$

Q43:

$$\sqrt{may} = \frac{1}{\sqrt{\Delta h}} = \frac{1}{75 \times 10^{-3}} \times \frac{4 \times 5,36 \times 10^{-3} - 0}{30 - 0}$$

$$= \frac{1}{75 \times 45} \times 11,92$$

$$= \frac{1}{35} \times 1,19 \times 10$$

$$= \frac{35}{115 \times 10^{5}} \times 115 \times 10$$

$$= 35 \times 10^{-4}$$

www.coursligne.com

Évolution temporel d'un système chimique : (9 points)

À $t_0 = 0$ on ajoute un volume d'eau oxygénée à un volume d'une solution de permanganate de potassium acidifié. L'eau oxygénée $H_2O_{2(I)}$ est oxydée par les ions permanganate $MnO_{4(qq)}^-$ selon l'équation:

$$5H_2O_{2(l)} + 2MnO_{4(aq)}^- + 6H_{(aq)}^- \rightarrow 5O_{2(g)} + 2Mn_{(aq)}^{2+} + 8H_2O_{(l)}$$

Le tableau ci-dessous présente l'évolution temporelle de la concentration des ions $Mn_{(aq)}^{2+}$.

t(min)	0	4	8	14	24	44	66	100	120
$\left[Mn_{(aq)}^{2+}\right](mol.L^{-1})$	0	0,10	0,20	0,28	0,40	0,50	0,54	0,56	0,56

Données:

- Volume molaire $V_m = 24 L mol^{-1}$; Volume du mélange : V = 10 mL; $H_2 O_{2(l)}$: réactif limitant.

Q44. Les couples (ox/réd) participant à cette réaction sont :

	$MnO_{4(aq)}^- / Mn_{(aq)}^{2+}$	$MnO_{4(aq)}^{-} / Mn_{(aq)}^{2+}$		$Mn_{(aq)}^{2+} / MnO_{4(aq)}$		$MnO_{4(aq)}^{-} / Mn_{(aq)}^{2+}$	F	$MnO_{4(aq)}^{-}/Mn_{(aq)}^{2+}$
•	$H_2O_{2(\ell)}/O_{2(g)}$ B	$O_{2(g)} / H_2 O_{2(l)}$	C	$O_{2(g)} / H_2 O_{2(l)}$	ט	$H_2 O_{(l)} / H_2 O_{2(l)}$	L	$H_2O_{(I)}/H_{(aq)}^*$

Q45. La valeur du temps de demi-réaction est :

				the state of the s	ACCOUNT MALES BY BURNESS WATER BUILDING		Act and a property of
$A = t_{1/2} = 10 \text{ min}$				1 1	4 44	TO	t = 60 min
A = 10 min	R 1.	= 14 min	C 1 = 2	4 min D	$t_{1/2} = 44 \text{ min}$	E	11/2 - 00 11111
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/2		- 1/2	1 -	1/2		A 1 - 100 - 100 BURN BURN BURN

Q46. Le volume du dioxygène formé à l'instant t = 24 min vaut :

	V Bonn to the man in t	The state of the state and the state of the
A	$v = 4.8.10^{-2} L$ C $v = 36.10^{-2} L$ D $v = 12$.	$10^{-2} I$ E $v = 24.10^{-2} L$
A v = 48.10 L B	$v = 4,8.10^{\circ}L$ $V = 36.10^{\circ}L$ $V = 12.$	10 L

Q47. La quantité de matière initiale de l'eau oxygénée vaut:

			maie de l'eau oxy		
A	$n_0 = 5.6.10^{-2} mol$	B	$n_0 = 2, 8.10^{-3} mol$	C	$n_0 = 1, 4.10^{-2} mol$
			$n_0 = 2,8.10^{-2} mol$		estation times even to a real architecture

P44: 5 H202+2Hn04+6H+502+2Hn+2H0

H202 - D2 +2H+2e

Réducteur onydant

=> O2/H2O2 et Mudu/Mnit

 $\left[\mathcal{A}_{M}^{2+}\right]_{1/2} = 0.28 \,\mathrm{mol/e}$

Évolution temporel d'un système chimique : (9 points)

À $t_0 = 0$ on ajoute un volume d'eau oxygénée à un volume d'une solution de permanganate de potassium acidifié. L'eau oxygénée $H_2O_{2(I)}$ est oxydée par les ions permanganate $MnO_{4(aq)}^-$ selon l'équation:

$$5H_2O_{2(I)} + 2MnO_{4(aq)}^- + 6H_{(aq)}^- \rightarrow 5O_{2(g)} + 2Mn_{(aq)}^{2+} + 8H_2O_{(I)}$$

Le tableau ci-dessous présente l'évolution temporelle de la concentration des ions Mn_{loo}^{2+} .

	25021 000000							(-4)	
t(min)	0	4	8	14	24	44	66	100	120
$\left[Mn_{(\omega q)}^{2+}\right](mol.L^{-1})$	0	0,10	0,20	0,28	0,40	0,50	0,54	0,56	0,56

Données:

- Volume molaire $V_m = 24 L mol^{-1}$; Volume du mélange : V = 10 mL; $H_2 O_{2(t)}$: réactif limitant.

Q44. Les couples (ox/réd) participant à cette réaction sont :

			$MnO_{4(aq)}/Mn_{(aq)}^{2+}$	C	$Mn_{(aq)}^{2+} / MnO_{4(aq)}$	D	$MnO_{4(aq)}^{-} / Mn_{(aq)}^{2+}$	F	$MnO_{4(aq)}^{-}/Mn_{(aq)}^{2+}$
•	$H_2O_{2(t)}/O_{2(g)}$,	$O_{2(g)} / H_2 O_{2(l)}$		$O_{2(g)} / H_2 O_{2(l)}$	D	$H_2O_{(l)} / H_2O_{2(l)}$		$H_2O_{(I)}/H_{(aq)}^+$

Q45. La valeur du temps de demi-réaction est :

				contract to the same of the population of the			ALCOHOL STATE OF THE PARTY OF T
10	D	4 -14	0	24 min D	t - 11 min	F	t = 60 min
A $t_{12} = 10 \text{ min}$	B	$I_{1/2} = 14 \text{ min}$	11/2 =	24 mm D	1 _{1/2} - 44 mm	E	1/2

046. Le volume du dioxygène formé à l'instant t = 24 min vaut :

The state of the s	the state of the s		
	2 7	E	24 10-21
A 10 10-2 r D 1 1 - 1 0 10-2 I	C 26 10-1	v-12 10-1	v = 24.10 L
A $v = 48.10^{-2} L$ B $v = 4, 8.10^{-2} L$	V=30.10 L D	V-12.10 D	
	the second secon	ARREST AT A 1 T P R SHE HAVE I ARREST TO A 2	

Q47. La quantité de matière initiale de l'eau oxygénée vaut:

			maie de reau oxy		
A	$n_0 = 5.6.10^{-2} mol$	B	$n_0 = 2, 8.10^{-3} mol$	C	$n_0 = 1, 4.10^{-2} mol$
			$n_0 = 2,8.10^{-2} mol$		contains their contains an extraording to the

582 + 21/10 - 6H + 582 + 21/10 | E f: | M2 | M2 | - | 0 | 0 | - |

E f: | M2 | M-21 | - | 51 | 21 | 41 | - |

E f: | M-51 | M-21 | - | 51 | 21 | 41 | - |

$$m(H_{n}^{2+}) = 2n \implies [H_{n}^{2+}] = \frac{2n}{V}$$

$$m(\theta_{2}) = 5n \implies V_{\theta_{2}} = 5n \times V_{m}$$

Évolution temporel d'un système chimique : (9 points)

À $t_0 = 0$ on ajoute un volume d'eau oxygénée à un volume d'une solution de permanganate de potassium acidifié. L'eau oxygénée $H_2O_{2(l)}$ est oxydée par les ions permanganate $MnO_{4(uq)}^-$ selon l'équation:

$$5H_{z}O_{z(t)} + 2MnO_{4(aq)}^{-} + 6H_{(aq)}^{-} \rightarrow 5O_{2(g)} + 2Mn_{(aq)}^{2+} + 8H_{z}O_{(t)}$$

Le tableau ci-dessous présente l'évolution temporelle de la concentration des ions $Mn_{(aq)}^{2+}$.

	25021 000000							(-4)	
t(min)	0	4	8	14	24	44	66	100	120
$\left[Mn_{(\omega q)}^{2+}\right](mol.L^{-1})$	0	0,10	0,20	0,28	0,40	0,50	0,54	0,56	0,56

Données:

- Volume molaire $V_m = 24 L mol^{-1}$; Volume du mélange : V = 10 mL; $H_2 O_{2(t)}$: réactif limitant.

Q44. Les couples (ox/réd) participant à cette réaction sont :

	MnO _{4(aq)} / Mn _(aq)		$MnO_{4(aq)}^{-} / Mn_{(aq)}^{2+}$		$Mn_{(aq)}^{2+} / MnO_{4(aq)}$		$MnO_{4(aq)}^{-} / Mn_{(aq)}^{2+}$	r	$MnO_{4(aq)}^- / Mn_{(aq)}^{2+}$
A	$H_2O_{2(t)}/O_{2(g)}$	В	$O_{2(g)} / H_2 O_{2(l)}$	C	$O_{2(g)} / H_2 O_{2(l)}$	D	$H_2 O_{(l)} / H_2 O_{2(l)}$	L	$H_2O_{(l)}/H_{(aq)}^+$

045. La valeur du temps de demi-réaction est :

				THE COMMENTS OF THE CO.	a opening of he			AND DESCRIPTION OF THE PARTY OF
A $t_{1/2} = 10 \text{ min}$	1				1 -		177	t = 60 min
1 - 10 min	D	t - 14 min	C	=74 min	1 1)	$t_{\rm m} = 44 {\rm min}$	H. 1	$l_{1/2} = 00 \text{ mm}$
A 1 - 10 mm	D	11.2 - 14 111111	1	1/2 111111	1	1/2	1	112

Q46. Le volume du dioxygène formé à l'instant t = 24 min vaut :

The state of the s	A STATE OF THE STA
	·· - 24 10 ⁻² /
A $v = 48.10^{-2}L$ B $v = 4,8.10^{-2}L$ C $v = 36.10^{-2}L$ D $v = 12.10^{-2}L$ E	y = 24.10 B

Q47. La quantité de matière initiale de l'eau oxygénée vaut:

A	$n_0 = 5.6.10^{-2} mol$	B	$n_0 = 2,8.10^{-3} mol$	C	$n_0 = 1, 4.10^{-2} mol$
D	$n_0 = 1, 4.10^{-3} mol$	E	$n_0 = 2,8.10^{-2} mol$		A resident to the control of the con

5 H202+2Nn0,-+6H- 582+2Mn2+ 8H20 $E1: \begin{cases} M_1 & M_2 & - & 0 \\ M-5N & M-2N \\ M-4N & - \\ M-4N & Men \end{cases} - \begin{cases} 5N & 2N \\ M-4N & M-2N \\ M-4N & M-4N \\ M-4N &$ H202 est limitant => M = 5x Mman $M_0 = \frac{5}{2} \times [M_N^{2+}]_{\xi \times V}$ $=\frac{5}{2}\times0,56\times10\times10^{-3}$

www.coursligne.com

Solution aqueuse d'acide éthanoïque : (4 points)

On considère une solution aqueuse (S) d'acide éthanoïque de concentration $C = 10^{-2} \text{ mol.} L^{-1}$. La mesure de la conductivité de la solution (S) a donné $\sigma = 1.56.10^{-2} \text{ S.m}^{-1}$.

Données: $\lambda_1 = \lambda_{H_1O^*} = 35 \, mS.m^2. \text{mol}^{-1}$; $\lambda_2 = \lambda_{\text{CH}_1COO^*} = 4 \, mS.m^2. \text{mol}^{-1}$; $\log 2 = 0.3$

On définit le taux d'avancement final par la relation: $\tau = \frac{x_f}{x_{max}}$

Q48. La concentration des ions oxonium dans cette solution est :

A	$[H_3O_{(nq)}^+] = 8.10^{-4} mol.L^{-1}$	В	$\left[H_3 O_{(aq)}^+ \right] = 4.10^{-4} mol. L^{-1}$	C	$[H_3O_{(qq)}^+] = 2.10^{-4} mol.L^{-1}$
D	$[H_3O^*_{(aq)}] = 4.10^{-5} mol.L^{-1}$	E	$\left[H_3 O_{(nq)}^+ \right] = 8.10^{-5} mol. L^{-1}$		de cumina antido riscordiscimento de consequenção e a conferencia e describido de servicio de servicio e de se

Q49. La valeur du pH du mélange à l'équilibre est :

Commence of the Commence of th	-			manufacture from the supplier of the supplier				
$ \mathbf{A} pH = 3,1$	B	pH = 3,4	C	pH = 3,6	D	pH = 3,8	E	pH = 4,2

Q50. Le taux d'avancement final de la réaction est :

A
$$\tau = 4\%$$
 B $\tau = 2\%$ C $\tau = 1\%$ D $\tau = 0,4\%$ E $\tau = 0,2\%$

Q48:

$$T = (h_{1} + h_{2}) \times [H_{30}^{+}]$$

$$= > [H_{30}^{+}] = \frac{T}{h_{1} + h_{2}}$$

$$= \frac{1,56 \times 10^{-2}}{39 \times 10^{-3}}$$

$$= \frac{166}{39} \times 10^{-1}$$

$$= 4 \times 10^{-1} \text{ mBe/m}^{3}$$

$$= > [H_{30}^{+}] = 4 \times 10^{-4} \text{ mBe/e}$$

Solution aqueuse d'acide éthanoïque : (4 points)

On considère une solution aqueuse (S) d'acide éthanoïque de concentration $C = 10^2 \text{ mol.} L^1$. La mesure de la conductivité de la solution (S) a donné $\sigma = 1.56.10^{-2} \text{ S.m}^{-1}$.

Données: $\lambda_1 = \lambda_{H,O} = 35 \, \text{mS.m}^2 \cdot \text{mol}^{-1}$; $\lambda_2 = \lambda_{CH,COO} = 4 \, \text{mS.m}^2 \cdot \text{mol}^{-1}$ $\log 2 = 0.3$

On définit le taux d'avancement final par la relation: $\tau = \frac{x_f}{x_{\text{max}}}$

Q48. La concentration des ions oxonium dans cette solution est :

A	$[H_3O_{(nq)}^+] = 8.10^{-4} \text{ mol.} L^{-1}$	В	$[H_3O_{(aq)}^+] = 4.10^{-4} mol.L^{-1}$	C	$[H_3O_{(eq)}^+] = 2.10^{-4} mol.L^{-1}$
D	$[H_3O_{(aq)}^*] = 4.10^{-5} mol.L^{-1}$	E	$\left[H_3 O_{(nq)}^+ \right] = 8.10^{-5} mol. L^{-1}$		дострани в на противорителни и под принадания для в под неговителя дост

Q49. La valeur du pH du mélange à l'équilibre est :

A pH = 3,1 **B** pH = 3,4 **C** pH = 3,6 **D** pH = 3,8 **E** pH = 4,2

Q50. Le taux d'avancement final de la réaction est :

A $\tau = 4\%$ B $\tau = 2\%$ C $\tau = 1\%$ D $\tau = 0,4\%$ E $\tau = 0,2\%$

Q49:

$$PH = -Log(EH_3o^{+}]$$

$$= -log(4 \times 10^{-4})$$

$$= -log(2^{2}) - log(10^{-4})$$

$$= -2log(2) + 4$$

$$= -9.6 + 4$$

*
$$log(A\times B) = Log(A) + log(B)$$

* $log(A^N) = N \times log(A)$.

Solution aqueuse d'acide éthanoïque : (4 points)

On considère une solution aqueuse (S) d'acide éthanoïque de concentration $C = 10^{-2} \text{ mol.} L^{-1}$. La mesure de la conductivité de la solution (S) a donné $\sigma = 1.56.10^{-2} \text{ S.m}^{-1}$.

Données: $\lambda_1 = \lambda_{H_1O}$ = 35 mS.m².mol⁻¹; $\lambda_2 = \lambda_{CH_1COO^-} = 4 mS.m^2.mol^{-1}$; $\log 2 = 0.3$

On definit le taux d'avancement final par la relation: $\tau = \frac{x_f}{x_{max}}$

Q48. La concentration des ions oxonium dans cette solution est :

A	$\left[\mathrm{H}_{3}\mathrm{O}_{(80)}^{+}\right] = 8.10^{-4} mol.L^{-1}$	В	$\left[H_3 O_{(aq)}^+ \right] = 4.10^{-4} mol. L^{-1}$	C	$[H_3O_{(aq)}^*] = 2.10^{-4} mol.L^{-1}$
D	$[H_3O_{(aq)}^*] = 4.10^{-5} mol.L^{-1}$	E	$[H_3O_{(nq)}^+] = 8.10^{-5} mol.L^{-1}$		В одника и отден постоя од постоя до под достубено во постоя од постоя од постоя од постоя од постоя од постоя

Q49. La valeur du pH du mélange à l'équilibre est :

A pH = 3,1 **B** pH = 3,4 **C** pH = 3,6 **D** pH = 3,8 **E** pH = 4,2

Q50. Le taux d'avancement final de la réaction est :

 A
 $\tau = 4\%$ B
 $\tau = 2\%$ C
 $\tau = 1\%$ D
 $\tau = 0,4\%$ E
 $\tau = 0,2\%$

A cide + ear =>
$$\frac{C}{C}$$

$$\begin{array}{rcl}
7 &=& \frac{4 \times 10^{-4}}{10^{-2}} \\
&=& 4 \times 10^{-2}
\end{array}$$

www.coursligne.com

Étude d'un comprimé d'ibuprofène : (3 points)

On dissout un comprimé d'ibuprofène dans un volume V_e d'eau pour obtenir une solution aqueuse (S).

On titre la solution (S) par une solution aqueuse d'hydroxyde de sodium de concentration

 $C_B = 0.20 \text{ mol.} L^{-1}$. Le volume versé à l'équivalence est $V_{B,E} = 9.7 \text{ mL}$.

Donnée: $M(ibuprofène) = 206 \text{ g.mol}^{-1}$.

Q51. La masse d'ibuprofène contenue dans le comprimé étudié vaut :

A
$$m_{ibu} = 0.4 \text{ mg}$$
 B $m_{ibu} = 4 \text{ mg}$ **C** $m_{ibu} = 4.10^{-2} \text{ mg}$ **D** $m_{ibu} = 400 \text{ mg}$ **E** $m_{ibu} = 500 \text{ mg}$

$$C_{A} \times V_{e} = \frac{m}{M} \Longrightarrow m = C_{A} \times V_{e} \times M$$

$$=0,2\times9,7\times206\times10^3$$

$$= 400 \times 10^{3} g$$

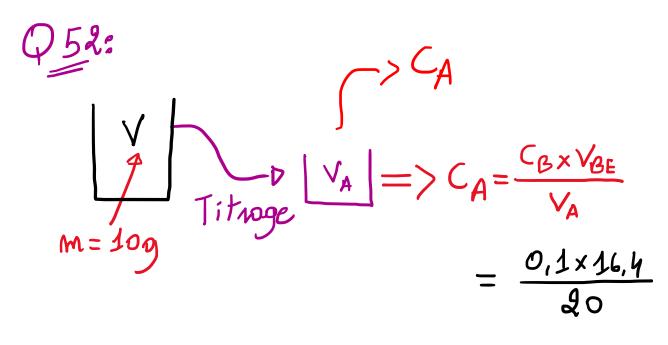
$$=$$
 $> m = 400 mg$

www.coursligne.com

Degré d'acidité d'un vinaigre : (5 points)

On prend la masse m = 10 g d'un vinaigre commercial, et on y ajoute de l'eau pour obtenir une solution aqueuse (S_A) d'acide éthanoïque $CH_3COOH_{(aq)}$ de volume $V = 100 \ mL$. On dose $V_A = 20 \ mL$ de la solution (S_A) par une solution aqueuse (S_B) d'hydroxyde de sodium de concentration $C_B = 0,10 \ mol.L^{-1}$. Le volume versé à l'équivalence est $V_{B,E} = 16,4 \ mL$.

Données:


- Le degré d'acidité d'un vinaigre commercial représente la masse d'acide éthanoïque pur en (g) contenu dans 100 g de vinaigre.
- $M(CH_3COOH) = 60 \text{ g.mol}^{-1}$; $pK_A(CH_3COOH_{(aq)} / CH_3COO_{(aq)}^{-}) = 4.8$

Q52. Le degré d'acidité de ce vinaigre vaut :

1	70	n	4.00	The same of the same of	the same of the same of the same of	Andrea American Services	-	
A	1-	1 K	4 90	0	11 20	1		 -
1	-	-	13/	161	11,2	D	00	100

Q53 . Les valeurs de l'avancement maximal de la réaction et du pH du milieu réactionnel pour le volume $V_B=8,2\ mL$ sont :

A	$x_f = 8, 2.10^{-4} mol$	<i>pH</i> = 4
В	$x_f = 4, 2.10^{-4} mol$	pH = 4,8
C	$x_f = 4, 2.10^{-4} mol$	pH = 4
D	$x_f = 6, 2.10^{-4} mol$	<i>pH</i> = 5
E	$x_f = 8, 2.10^{-4} mol$	pH = 4.8

$$= \frac{1}{2} \times 16,4 \times 10^{3}$$

* La mane de l'acide dans V=100 ml:

$$C_{A} \times V = \frac{m}{M} \Longrightarrow M = C_{A} \times V \times M$$

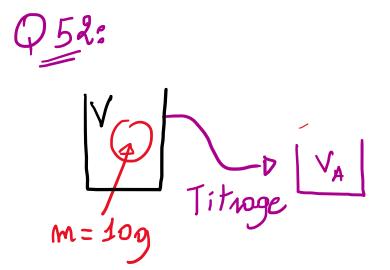
$$= 8.2 \times 100 \times 60 \times 10^{5}$$

$$= 0.499$$

Degré d'acidité d'un vinaigre : (5 points)

On prend la masse m = 10 g d'un vinaigre commercial, et on y ajoute de l'eau pour obtenir une solution aqueuse (S_A) d'acide éthanoïque $CH_3COOH_{(aq)}$ de volume $V = 100 \ mL$. On dose $V_A = 20 \ mL$ de la solution (S_A) par une solution aqueuse (S_B) d'hydroxyde de sodium de concentration $C_B = 0,10 \ mol.L^{-1}$. Le volume versé à l'équivalence est $V_{B.E} = 16,4 \ mL$.

Données:


- Le degré d'acidité d'un vinaigre commercial représente la masse d'acide éthanoïque pur en (g) contenu dans 100 g de vinaigre.
- $M(CH_3COOH) = 60 \text{ g.mol}^{-1}$; $pK_A(CH_3COOH_{(aq)} / CH_3COO_{(aq)}^{-}) = 4.8$

Q52. Le degré d'acidité de ce vinaigre vaut :

A 7° (B) 4,9° (C) 11,2° (D) 9° (E) 12°

Q53 . Les valeurs de l'avancement maximal de la réaction et du pH du milieu réactionnel pour le volume $V_B=8,2\ mL$ sont :

В	,	
A	$x_f = 8, 2.10^{-4} mol$	<i>pH</i> = 4
В	$x_f = 4, 2.10^{-4} mol$	pH = 4,8
C	$x_f = 4, 2.10^{-4} mol$	<i>pH</i> = 4
D	$x_f = 6, 2.10^{-4} mol$	<i>pH</i> = 5
E	$x_f = 8, 2.10^{-4} mol$	pH = 4.8

donc 109 de Vinaigne contient 0,499 d'acide éthonoique

Degré d'acidité d'un vinaigre : (5 points)

On prend la masse m = 10 g d'un vinaigre commercial, et on y ajoute de l'eau pour obtenir une solution aqueuse (S_A) d'acide éthanoïque $CH_3COOH_{(aq)}$ de volume $V = 100 \ mL$. On dose $V_A = 20 \ mL$ de la solution (S_A) par une solution aqueuse (S_B) d'hydroxyde de sodium de concentration $C_B = 0,10 \ mol.L^{-1}$. Le volume versé à l'équivalence est $V_{B,E} = 16,4 \ mL$.

Données:

- Le degré d'acidité d'un vinaigre commercial représente la masse d'acide éthanoïque pur en (g) contenu dans 100 g de vinaigre.
- $M(CH_3COOH) = 60 \text{ g.mol}^{-1}$; $pK_A(CH_3COOH_{(aq)} / CH_3COO_{(aq)}^{-}) = 4.8$

Q52. Le degré d'acidité de ce vinaigre vaut :

1 1	70	D		the real distriction of the last	-	designation in the contrader of the contrader	-	
A	10	B	4 00	0	11 00	1		 -
		-	7,7		11.2	n	00	100

Q53. Les valeurs de l'avancement maximal de la réaction et du pH du milieu réactionnel pour le volume $V_R = 8,2 \ mL$ sont :

	β ,	
A	$x_f = 8, 2.10^{-4} mol$	pH = 4
В	$x_f = 4, 2.10^{-4} mol$	pH = 4,8
C	$x_f = 4, 2.10^{-4} mol$	<i>pH</i> = 4
D	$x_f = 6, 2.10^{-4} mol$	<i>pH</i> = 5
E	$x_f = 8, 2.10^{-4} mol$	pH = 4.8

titrante to CAVAD

Q53:

$$V_{\rm B} = 8.2 \,\mathrm{me} = \frac{V_{\rm BE}}{2} (\mathrm{Demi-équivalence})$$

Demi-équivalence > PH = PKA

* pendant de dosage: ng = CBX VB

 $= 0.1 \times 8,2 \times 10^{3}$

www.coursligne.com

Solution aqueuse d'acide benzoïque : (6 points)

Le pH d'une solution aqueuse (S) d'acide benzoïque de volume V=1L et de concentration $C=0,1 mol.L^{-1}$, à $25^{\circ}C$, est pH=2,6.

Données: $10^{0.8} = 6.3$; $10^{0.4} = 2.5$; $1-10^{-1.6} \approx 1$

Q54. L'avancement final de la réaction de l'acide benzoïque avec l'eau est:

(A	$x_f = 2,5.10^{-3} mol$	В	$x_f = 1, 4.10^{-3} mol$	C	$x_f = 2,5.10^{-2} mol$
	D	$x_f = 4.10^{-2} mol$	E	$x_f = 6.10^{-2} mol$		

Q55. La constante d'acidité K_A du couple $(C_6H_5COOH_{(aq)}/C_6H_5COO^-_{(aq)})$ a pour expression:

A	$K_A = \frac{10^{-pH}}{C - 10^{-pH}}$	В	$K_A = \frac{10^{-2pH}}{C(1-10^{-pH})}$	C	$K_A = \frac{10^{-2pH}}{C - 10^{-pH}}$	D	$K_A = \frac{C.10^{-2pH}}{1 - 10^{-pH}}$	E	$K_A = \frac{10^{-pH}}{C - 10^{-2pH}}$
1 1	C - 10 ·	1	0(1 10)		C-10		1-10		C 10

Q56. La valeur de la constante d'acidité K_A du couple $(C_6H_5COOH_{(aq)}/C_6H_5COO^-_{(aq)})$ est:

A
$$K_A = 2.10^{-5}$$
 B $K_A = 6.3.10^{-5}$ **C** $K_A = 4.10^{-4}$ **D** $K_A = 6.3.10^{-10}$ **E** $K_A = 4.10^{-7}$

954:

=>
$$\mu_{\rm F} = 10^{-8.6} \times 1$$

= $10^{3} \times 10^{31}$

$$\Rightarrow$$
 $n_f = 2.5 \times 10^{-3} \text{ mol}.$

Solution aqueuse d'acide benzoïque : (6 points)

Le pH d'une solution aqueuse (S) d'acide benzoïque de volume V=1L et de concentration $C=0,1 mol.L^{-1}$, à $25^{\circ}C$, est pH=2,6.

Données: $10^{0.8} = 6.3$; $10^{0.4} = 2.5$; $1-10^{-1.6} \approx 1$

Q54. L'avancement final de la réaction de l'acide benzoïque avec l'eau est:

A	$x_f = 2,5.10^{-3} mol$	В	$x_f = 1, 4.10^{-3} mol$	C	$x_f = 2,5.10^{-2} mol$
D	$x_f = 4.10^{-2} mol$	E	$x_f = 6.10^{-2} mol$		

Q55. La constante d'acidité K_A du couple $(C_6H_5COOH_{(aq)}/C_6H_5COO^-_{(aq)})$ a pour expression:

Q56. La valeur de la constante d'acidité K_A du couple $(C_6H_5COOH_{(aq)}/C_6H_5COO_{(aq)}^-)$ est:

A
$$K_A = 2.10^{-5}$$
 B $K_A = 6,3.10^{-5}$ **C** $K_A = 4.10^{-4}$ **D** $K_A = 6,3.10^{-10}$ **E** $K_A = 4.10^{-7}$

Acide + eau:
$$K_{A} = \frac{[H_3 \sigma^{\dagger}]^2}{c - [H_3 \sigma^{\dagger}]}$$

$$= > K_A = \frac{10^{-3}P^{H}}{C - 10^{-}P^{H}}$$

$$K_{A} = \frac{10^{-2x^{2}/6}}{0.1 - 10^{-3/6}} = \frac{(10^{-3/6})^{2}}{10^{-1} \times (1 - 10^{-1/6})}$$
$$= (3.5 \times 10^{-3})^{2} \times 10$$

$$=> K_A = 6.3 \times 10^{-6}$$

www.coursligne.com

Solution aqueuse d'ammoniac : (5 points)

La mesure du pH d'une solution aqueuse (S) d'ammoniac de concentration C, a donné pH = 10,3.

Pour cette solution : $\log \frac{[NH_3]}{[NH_4^+]} = 1,1$.

Q57. Le taux d'avancement final de la réaction qui se produit a pour expression:

A	$\tau = \frac{10^{-pH}}{C.K_{\bullet}}$	В	$\tau = \frac{10^{pH}}{C.K_{\bullet}}$	C	$\tau = \frac{10^{-\rho H}.K_e}{C} \boxed{\mathbf{D}} \tau = \frac{10^{\rho H}.K_e}{C}$	E	$\tau = \frac{C.10^{\rho H}}{K_e}$
---	---	---	--	---	---	---	------------------------------------

Q58. La valeur de pK_A du couple $(NH_{4(aq)}^+/NH_{3(aq)})$ vaut :

[A]
$$pK_A = 9.8$$
 | B| $pK_A = 5.4$ | C| $pK_A = 10.3$ | D| $pK_A = 4.1$ | E| $pK_A = 9.2$

Q 57:

Base+lau: $C = \frac{Ke}{C \times 10^{-PN}}$

$$PH = PK_A + Log(\frac{[A]}{[AH]})$$

$$PK_A = PH - Log(\frac{[A]}{[AH]})$$

$$= 10,3 - 1,1$$

$$= NA = 9K_A - 3,2$$

www.coursligne.com

Réaction d'acide lactique avec l'hydroxyde de sodium : (5 points)

On ajoute au volume $V_A = 20 \, mL$ d'une solution aqueuse d'acide lactique $C_3 H_6 O_3$ de concentration $C_A = 3.10^{-2} mol.L^{-1}$, le volume $V_B = 10 mL$ d'une solution aqueuse d'hydroxyde de sodium de concentration $C_B = 1.5.10^{-2} \text{ mol.} L^{-1}$. Le pH du mélange est pH = 3,3.

Donnée: $10^{-10.7} = 2.10^{-11}$

Q59. L'avancement final x_f de la réaction qui a eu lieu a pour expression:

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \textbf{A} & \textbf{j}_f = C_B.V_B - (V_A + V_B).10^{pH - pK_e} & \textbf{B} & x_f = C_A.V_A - (V_A + V_B).10^{pH - pK_e} & \textbf{C} & x_f = C_B.V_B + (V_A + V_B).10^{pH - pK_e} \\ \hline \textbf{D} & x_f = C_A.V_A + (V_A + V_B).10^{pH - pK_e} & \textbf{E} & x_f = C_A.V_A + (V_A + V_B).10^{pK_e - pH} \\ \hline \end{array}$$

Q60. La valeur de la concentration $C_3H_5O_{3(aq)}^-$ est:

$$Nf = C_B V_B - (V_A + V_B) \times [H\bar{o}]$$

$$= C_B V_B - (V_A + V_B) \times \frac{Ke}{1\bar{o}^{-PH}}$$

Réaction d'acide lactique avec l'hydroxyde de sodium : (5 points)

On ajoute au volume $V_A = 20 \, mL$ d'une solution aqueuse d'acide lactique $C_3 H_6 O_3$ de concentration $C_A = 3.10^{-2} \, mol.L^{-1}$, le volume $V_B = 10 \, mL$ d'une solution aqueuse d'hydroxyde de sodium de concentration $C_B = 1.5.10^{-2} \, mol.L^{-1}$. Le pH du mélange est pH = 3.3.

Donnée: $10^{-10.7} = 2.10^{-11}$

Q59. L'avancement final x_f de la réaction qui a eu lieu a pour expression:

Q60. La valeur de la concentration $C_3H_5O_{3(aq)}^-$ est:

$$\mathbf{A} \begin{bmatrix} C_{3}H_{5}O_{3(aq)}^{-} \end{bmatrix} = 5.10^{-2} mol.L^{-1} \quad \mathbf{B} \begin{bmatrix} C_{3}H_{5}O_{3(aq)}^{-} \end{bmatrix} = 2.10^{-2} mol.L^{-1} \quad \mathbf{C} \begin{bmatrix} C_{3}H_{5}O_{3(aq)}^{-} \end{bmatrix} = 1,5.10^{-2} mol.L^{-1} \\
\mathbf{D} \begin{bmatrix} C_{3}H_{5}O_{3(aq)}^{-} \end{bmatrix} = 5.10^{-3} mol.L^{-1} \quad \mathbf{E} \begin{bmatrix} C_{3}H_{5}O_{3(aq)}^{-} \end{bmatrix} = 1,5.10^{-4} mol.L^{-1}$$

$$[C_{3}H_{5}O_{5}^{-}] = \frac{N_{4}}{V_{A}+V_{B}}$$

$$= \frac{C_{B}V_{B}-(V_{A}+V_{B})\times 10^{PH-PK_{B}}}{V_{A}+V_{B}}$$

$$= \frac{1,5\times 10^{\frac{1}{2}}\cdot 10 - \frac{30\times 10^{-10,7}}{30\times 10^{-10,7}}$$

$$=\frac{15\times10^{3}}{30}$$

$$= 0.5 \times 10^{-2}$$

$$=$$
 $[C_3H_5O_5] = 5 \times 10^3 \text{ MBC/C}$